Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
At IUPAC standard temperature and pressure (0 °C and 100 kPa), dry air has a density of approximately 1.2754 kg/m 3. At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
An amagat (denoted amg or Am [1]) is a practical unit of volumetric number density.Although it can be applied to any substance at any conditions, it is defined as the number of ideal gas molecules per unit volume at 1 atm (101.325 kPa) and 0 °C (273.15 K). [2]
In SI units, the density of water is (approximately) 1000 kg/m 3 or 1 g/cm 3, which makes relative density calculations particularly convenient: the density of the object only needs to be divided by 1000 or 1, depending on the units. The relative density of gases is often measured with respect to dry air at a temperature of 20 °C and a ...
The molar volume of gases around STP and at atmospheric pressure can be calculated with an accuracy that is usually sufficient by using the ideal gas law. The molar volume of any ideal gas may be calculated at various standard reference conditions as shown below: V m = 8.3145 × 273.15 / 101.325 = 22.414 dm 3 /mol at 0 °C and 101.325 kPa
R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature. For example, in SI units R = 8.3145 J⋅K −1 ⋅mol −1 when pressure is expressed in pascals, volume in cubic meters, and absolute temperature in kelvin. The ideal gas law is an extension of experimentally discovered ...
A normal cubic meter (Nm 3) is the metric expression of gas volume at standard conditions and it is usually (but not always) defined as being measured at 0 °C and 1 atmosphere of pressure. A standard cubic foot (scf) is the USA expression of gas volume at standard conditions and it is often ( but not always ) defined as being measured at 60 ...