Search results
Results from the WOW.Com Content Network
Nonetheless, the role of flexibility and its impact on an object's load-bearing potential is one that did receive attention until the mid-2000s and onward. In an initial study, Vella [3] studied the load supported by a raft composed of thin, rigid strips. Specifically, he compared the case of floating individual strips to floating an ...
In On Floating Bodies, Archimedes suggested that (c. 246 BC): Any object, totally or partially immersed in a fluid or liquid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes' principle allows the buoyancy of any floating object partially or fully immersed in a fluid to be calculated.
Surface tension has the dimension of force per unit length, or of energy per unit area. [3] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy , which is a more general term in the sense that it applies also to solids .
On Floating Bodies (Greek: Περὶ τῶν ἐπιπλεόντων σωμάτων) is a work, originally in two books, by Archimedes, one of the most important mathematicians, physicists, and engineers of antiquity.
Buoyancy (/ ˈ b ɔɪ ən s i, ˈ b uː j ən s i /), [1] [2] or upthrust is a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid.
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [ 1 ] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [ 2 ]
Many swimmers know that there are easy ways to float at the surface, such as lying on one's back or holding a full breath. Buoyancy becomes noticeable when a swimmer tries to dive to the bottom of the pool, which can take effort. Scuba divers work with many buoyancy issues, as divers must know how to float, hover and sink in the water.
Fig. 1: Fermat's principle in the case of refraction of light at a flat surface between (say) air and water. Given an object-point A in the air, and an observation point B in the water, the refraction point P is that which minimizes the time taken by the light to travel the path APB.