Search results
Results from the WOW.Com Content Network
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
Using the above formulas, one can derive the distribution of the range of the order statistics, that is the distribution of () (), i.e. maximum minus the minimum.
In statistics, a k-statistic is a minimum-variance unbiased estimator of a cumulant. [1] [2] References External links. k-Statistic on ...
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
for k = 0, 1, 2, ..., n, where =!! ()! is the binomial coefficient. The formula can be understood as follows: p k q n−k is the probability of obtaining the sequence of n independent Bernoulli trials in which k trials are "successes" and the remaining n − k trials
This formula follows from the multiplicative formula above by multiplying numerator and denominator by (n − k)!; as a consequence it involves many factors common to numerator and denominator. It is less practical for explicit computation (in the case that k is small and n is large) unless common factors are first cancelled (in particular ...
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence [1]), denoted (), is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P.