enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load. It may be quantified in terms of an angle (angular displacement) or a distance (linear displacement).

  3. Oblique shock - Wikipedia

    en.wikipedia.org/wiki/Oblique_shock

    This chart shows the oblique shock angle, β, as a function of the corner angle, θ, for a few constant M 1 lines. The red line separates the strong and weak solutions. The blue line represents the point when the downstream Mach number becomes sonic. The chart assumes =1.4, which is valid for an ideal diatomic gas.

  4. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  5. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    Examining the formulas for buckling and deflection, we see that the force required to achieve a given deflection or to achieve buckling depends directly on Young's modulus. Examining the density formula, we see that the mass of a beam depends directly on the density.

  6. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is also used in order to predict the deflection that will occur in a statically determinate beam when a load is applied at a point in between the beam's supports. Other elastic calculations usually require the use of one additional elastic property, such as the shear modulus G {\displaystyle G} , bulk modulus K {\displaystyle K ...

  7. Airy points - Wikipedia

    en.wikipedia.org/wiki/Airy_points

    Vertical and angular deflection of a beam supported at its Airy points. Supporting a uniform beam at the Airy points produces zero angular deflection of the ends. [ 2 ] [ 3 ] The Airy points are symmetrically arranged around the centre of the length standard and are separated by a distance equal to

  8. Structural dynamics - Wikipedia

    en.wikipedia.org/wiki/Structural_dynamics

    where u is the deflection of the structure due to the applied load. Graphs of dynamic amplification factors vs non-dimensional rise time (t r /T) exist for standard loading functions (for an explanation of rise time, see time history analysis below). Hence the DAF for a given loading can be read from the graph, the static deflection can be ...

  9. Slope deflection method - Wikipedia

    en.wikipedia.org/wiki/Slope_deflection_method

    The slope deflection method is a structural analysis method for beams and frames introduced in 1914 by George A. Maney. [1] The slope deflection method was widely used for more than a decade until the moment distribution method was developed. In the book, "The Theory and Practice of Modern Framed Structures", written by J.B Johnson, C.W. Bryan ...