Search results
Results from the WOW.Com Content Network
Acetylene (systematic name: ethyne) is the chemical compound with the formula C 2 H 2 and structure H−C≡C−H. It is a hydrocarbon and the simplest alkyne. [8] This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure form and thus is usually handled as a solution. [9]
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
Ethenone is a highly reactive gas (at standard conditions) and has a sharp irritating odour.It is only reasonably stable at low temperatures (−80 °C). It must therefore always be prepared for each use and processed immediately, otherwise a dimerization to diketene occurs or it reacts to polymers that are difficult to handle.
Although ethane is a greenhouse gas, it is much less abundant than methane, has a lifetime of only a few months compared to over a decade, [30] and is also less efficient at absorbing radiation relative to mass. In fact, ethane's global warming potential largely results from its conversion in the atmosphere to methane. [31]
The preparation of EtBr stands as a model for the synthesis of bromoalkanes in general. It is usually prepared by the addition of hydrogen bromide to ethene: H 2 C=CH 2 + HBr → H 3 C-CH 2 Br. Bromoethane is inexpensive and would rarely be prepared in the laboratory.
For example, CH 3-CH 3 is the alkane ethANe. The name of CH 2 =CH 2 is therefore ethENe. For straight-chain alkenes with 4 or more carbon atoms, that name does not completely identify the compound. For those cases, and for branched acyclic alkenes, the following rules apply: Find the longest carbon chain in the molecule.
A bond between a hydrogen atom and an sp 2 hybridised carbon atom is about 0.6% shorter than between hydrogen and sp 3 hybridised carbon. A bond between hydrogen and sp hybridised carbon is shorter still, about 3% shorter than sp 3 C-H. This trend is illustrated by the molecular geometry of ethane, ethylene and acetylene. [citation needed]