Search results
Results from the WOW.Com Content Network
In the case of discrete inputs (indicator or frequency features for discrete events), naive Bayes classifiers form a generative-discriminative pair with multinomial logistic regression classifiers: each naive Bayes classifier can be considered a way of fitting a probability model that optimizes the joint likelihood (,), while logistic ...
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:
The parameter is called the hyperparameter, while its distribution given by (,) is an example of a hyperprior distribution. The notation of the distribution of Y changes as another parameter is added, i.e. Y ∣ θ , μ ∼ N ( θ , 1 ) {\displaystyle Y\mid \theta ,\mu \sim N(\theta ,1)} .
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [3]
This means that if a data point has either a categorical or multinomial distribution, and the prior distribution of the distribution's parameter (the vector of probabilities that generates the data point) is distributed as a Dirichlet, then the posterior distribution of the parameter is also a Dirichlet. Intuitively, in such a case, starting ...
It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network to normalize the output of a network to a probability distribution over predicted output classes.
When k = 2, the multinomial distribution is the binomial distribution. Categorical distribution, the distribution of each trial; for k = 2, this is the Bernoulli distribution. The Dirichlet distribution is the conjugate prior of the multinomial in Bayesian statistics. Dirichlet-multinomial distribution. Beta-binomial distribution.