Search results
Results from the WOW.Com Content Network
A fuel element failure is a rupture in a nuclear reactor's fuel cladding that allows the nuclear fuel or fission products, either in the form of dissolved radioisotopes or hot particles, to enter the reactor coolant or storage water. [1] The de facto standard nuclear fuel is uranium dioxide or a mixed uranium/plutonium dioxide.
One of the main uses of zirconium alloys is in nuclear technology, as cladding of fuel rods in nuclear reactors, especially water reactors. A typical composition of nuclear-grade zirconium alloys is more than 95 weight percent [ 1 ] zirconium and less than 2% of tin , niobium , iron , chromium , nickel and other metals, which are added to ...
The residual decay heat causes rapid increase in temperature and internal pressure of the fuel cladding which leads to plastic deformation and subsequent bursting. During a loss-of-coolant accident, zirconium-based fuel claddings undergo high temperature oxidation, phase transformation, and creep deformation simultaneously. [3]
This page describes how uranium dioxide nuclear fuel behaves during both normal nuclear reactor operation and under reactor accident conditions, such as overheating. Work in this area is often very expensive to conduct, and so has often been performed on a collaborative basis between groups of countries, usually under the aegis of the Organisation for Economic Co-operation and Development's ...
This was replaced by a stainless steel cladding, but this absorbed enough neutrons to affect criticality, and in turn required the design to operate on slightly enriched uranium rather than the magnox's natural uranium, driving up fuel costs. Ultimately the economics of the system proved little better than Magnox.
The Chernobyl corium is composed of the reactor uranium dioxide fuel, its zircaloy cladding, molten concrete, as well as other materials in and below the reactor, and decomposed and molten serpentinite packed around the reactor as its thermal insulation. Analysis has shown that the corium was heated to at most 2,255 °C (4,091 °F), and ...
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
A molten fuel reactor has the advantage of easy removal of xenon-135. Xenon-135, an important neutron absorber, makes solid fueled reactors difficult to control. In a molten fueled reactor, xenon-135 can be removed. In solid-fuel reactors, xenon-135 remains in the fuel and interferes with reactor control. [49] Slow heatup. Coolant and fuel are ...