Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Every repeating decimal can be expressed as a rational number (fraction). Every integer, when added with a decimal point in front and concatenated with itself infinite times, can be converted to a fraction, e.g. we can transform 123456 in this manner to 0.123456123456..., which can thus be converted to fraction 123456 ⁄ 999999 .
From the relation to unit fractions, it can be shown that cyclic numbers are of the form of the Fermat quotient. where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b).
In contrast with its rows and columns, the diagonals of this square do not sum to 27; however, their mean is 27, as one diagonal adds to 23 while the other adds to 31.. All prime reciprocals in any base with a period will generate magic squares where all rows and columns produce a magic constant, and only a select few will be full, such that their diagonals, rows and columns collectively yield ...