Search results
Results from the WOW.Com Content Network
For this class of problems, the instance data P would be the integers m and n, and the predicate F. In a typical backtracking solution to this problem, one could define a partial candidate as a list of integers c = (c[1], c[2], …, c[k]), for any k between 0 and n, that are to be assigned to the first k variables x[1], x[2], …, x[k]. The ...
The DPLL algorithm enhances over the backtracking algorithm by the eager use of the following rules at each step: Unit propagation If a clause is a unit clause, i.e. it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary.
Some of the better-known exact cover problems include tiling, the n queens problem, and Sudoku. The name dancing links , which was suggested by Donald Knuth , stems from the way the algorithm works, as iterations of the algorithm cause the links to "dance" with partner links so as to resemble an "exquisitely choreographed dance."
Algorithm X with Knuth's suggested heuristic for selecting columns solves this problem as follows: Level 0. Step 1—The matrix is not empty, so the algorithm proceeds. Step 2—The lowest number of 1s in any column is two. Column 1 is the first column with two 1s and thus is selected (deterministically):
Backtracking search is a general algorithm for finding all (or some) solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.
Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.
Recursive descent with backtracking is a technique that determines which production to use by trying each production in turn. Recursive descent with backtracking is not limited to LL(k) grammars, but is not guaranteed to terminate unless the grammar is LL(k).
Such problems are usually solved via search, in particular a form of backtracking or local search. Constraint propagation is another family of methods used on such problems; most of them are incomplete in general, that is, they may solve the problem or prove it unsatisfiable, but not always. Constraint propagation methods are also used in ...