Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Expectation conditional maximization (ECM) replaces each M step with a sequence of conditional maximization (CM) steps in which each parameter θ i is maximized individually, conditionally on the other parameters remaining fixed. [34] Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [35]
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
Draw a sample from a probability distribution. Minimize the cross-entropy between this distribution and a target distribution to produce a better sample in the next iteration. Reuven Rubinstein developed the method in the context of rare-event simulation , where tiny probabilities must be estimated, for example in network reliability analysis ...
Random sample consensus (RANSAC) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers, when outliers are to be accorded no influence [clarify] on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method. [1]
where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...
There is not a single algorithm for training such classifiers, but a family of algorithms based on a common principle: all naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it is red, round ...
In statistics, M-estimators are a broad class of extremum estimators for which the objective function is a sample average. [1] Both non-linear least squares and maximum likelihood estimation are special cases of M-estimators.