Search results
Results from the WOW.Com Content Network
A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857 , whose first six integer multiples are
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number. [1]142857, the six repeating digits of 1 / 7 (0. 142857), is the best-known cyclic number in base 10.
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
A cyclic group Z n is a group all of whose elements are powers of a particular element a where a n = a 0 = e, the identity. A typical realization of this group is as the complex n th roots of unity. Sending a to a primitive root of unity gives an isomorphism between the two. This can be done with any finite cyclic group.
A cyclic group, C n is the group of rotations of a regular n-gon, that is, n elements equally spaced around a circle. This group has φ(d ) elements of order d for each divisor d of n, where φ(d ) is the Euler φ-function, giving the number of natural numbers less than d which are relatively prime to d.