Search results
Results from the WOW.Com Content Network
PyCharm – Cross-platform Python IDE with code inspections available for analyzing code on-the-fly in the editor and bulk analysis of the whole project. PyDev – Eclipse-based Python IDE with code analysis available on-the-fly in the editor or at save time. Pylint – Static code analyzer. Quite stringent; includes many stylistic warnings as ...
The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...
Serial concatenated convolutional codes; Shaping codes; Slepian–Wolf coding; Snake-in-the-box; Soft-decision decoder; Soft-in soft-out decoder; Sparse graph code; Srivastava code; Stop-and-wait ARQ; Summation check
In computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking).
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.
The Damm algorithm is similar to the Verhoeff algorithm.It too will detect all occurrences of the two most frequently appearing types of transcription errors, namely altering a single digit or transposing two adjacent digits (including the transposition of the trailing check digit and the preceding digit).