enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    In control engineering and system identification, a state-space representation is a mathematical model of a physical system that uses state variables to track how inputs shape system behavior over time through first-order differential equations or difference equations. These state variables change based on their current values and inputs, while ...

  3. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  4. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    At this point the phase space changes qualitatively and the dynamical system is said to have gone through a bifurcation. Bifurcation theory considers a structure in phase space (typically a fixed point, a periodic orbit, or an invariant torus) and studies its behavior as a function of the parameter μ. At the bifurcation point the structure may ...

  5. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    By Gelfand representation, every commutative C*-algebra A is of the form C 0 (X) for some locally compact Hausdorff X. In this case, S(A) consists of positive Radon measures on X, and the pure states are the evaluation functionals on X. More generally, the GNS construction shows that every state is, after choosing a suitable representation, a ...

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The state of an isolated physical system is represented, at a fixed time , by a state vector | belonging to a Hilbert space called the state space. Separability is a mathematically convenient hypothesis, with the physical interpretation that the state is uniquely determined by countably many observations.

  7. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    It is clear from the definition of the inner product on the GNS Hilbert space that the state can be recovered as a vector state on . This proves the theorem. This proves the theorem. The method used to produce a ∗ {\displaystyle *} -representation from a state of A {\displaystyle A} in the proof of the above theorem is called the GNS ...

  8. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  9. Representation theory - Wikipedia

    en.wikipedia.org/wiki/Representation_theory

    The vector space V is called the representation space of φ and its dimension (if finite) is called the dimension of the representation (sometimes degree, as in [18]). It is also common practice to refer to V itself as the representation when the homomorphism φ is clear from the context; otherwise the notation ( V , φ ) can be used to denote ...