enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  3. Optimal instruments - Wikipedia

    en.wikipedia.org/wiki/Optimal_instruments

    To estimate parameters of a conditional moment model, the statistician can derive an expectation function (defining "moment conditions") and use the generalized method of moments (GMM). However, there are infinitely many moment conditions that can be generated from a single model; optimal instruments provide the most efficient moment conditions.

  4. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]

  5. Arellano–Bond estimator - Wikipedia

    en.wikipedia.org/wiki/Arellano–Bond_estimator

    In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]

  6. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  7. Generalized estimating equation - Wikipedia

    en.wikipedia.org/wiki/Generalized_estimating...

    The term "variance structure" refers to the algebraic form of the covariance matrix between outcomes, Y, in the sample. Examples of variance structure specifications include independence, exchangeable, autoregressive, stationary m-dependent, and unstructured.

  8. Method of moments (electromagnetics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments...

    The method of moments (MoM), also known as the moment method and method of weighted residuals, [1] is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the ...

  9. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    Generally, the first k moments are taken because the errors due to sampling increase with the order of the moment. Thus, we get k equations μ r (θ 1, θ 2,…, θ k) = m r, r = 1, 2, …, k. Solving these equations we get the method of moment estimators (or estimates) as m r = 1/n ΣX i r. [2] See also generalized method of moments.