enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    Principal sources of Gaussian noise in digital images arise during acquisition e.g. sensor noise caused by poor illumination and/or high temperature, and/or transmission e.g. electronic circuit noise. [3] In digital image processing Gaussian noise can be reduced using a spatial filter, though when smoothing an image, an undesirable outcome may ...

  3. Latent diffusion model - Wikipedia

    en.wikipedia.org/wiki/Latent_Diffusion_Model

    The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [3]Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian) on training images.

  4. List of noise topics - Wikipedia

    en.wikipedia.org/wiki/List_of_noise_topics

    1/f noise; A-weighting; Ambient noise level; Antenna noise temperature; Artificial noise; Audio noise reduction; Audio system measurements; Black noise; Blue noise; Burst noise; Carrier-to-receiver noise density; Channel noise level; Circuit noise level; Colors of noise; Comfort noise; Comfort noise generator; Cosmic noise; Crackling noise; DBa ...

  5. Image noise - Wikipedia

    en.wikipedia.org/wiki/Image_noise

    Image noise can also originate in film grain and in the unavoidable shot noise of an ideal photon detector. Image noise is an undesirable by-product of image capture that obscures the desired information. Typically the term “image noise” is used to refer to noise in 2D images, not 3D images.

  6. File:512x512-Gaussian-Noise.jpg - Wikipedia

    en.wikipedia.org/.../File:512x512-Gaussian-Noise.jpg

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate

  7. Geometric mean filter - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_filter

    Each pixel of the output image at point (x,y) is given by the product of the pixels within the geometric mean mask raised to the power of 1/mn. For example, using a mask size of 3 by 3, pixel (x,y) in the output image will be the product of S(x,y) and all 8 of its surrounding pixels raised to the 1/9th power.

  8. Gaussian blur - Wikipedia

    en.wikipedia.org/wiki/Gaussian_blur

    In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.

  9. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    The resulting image, with white Gaussian noise removed is shown below the original image. When filtering any form of data it is important to quantify the signal-to-noise-ratio of the result. [citation needed] In this case, the SNR of the noisy image in comparison to the original was 30.4958%, and the SNR of the denoised image is 32.5525%. The ...