enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.

  3. Mersenne's laws - Wikipedia

    en.wikipedia.org/wiki/Mersenne's_laws

    The equation was first proposed by French mathematician and music theorist Marin Mersenne in his 1636 work Harmonie universelle. [2] Mersenne's laws govern the construction and operation of string instruments, such as pianos and harps, which must accommodate the total tension force required to keep the strings at the proper pitch.

  4. String theory - Wikipedia

    en.wikipedia.org/wiki/String_theory

    In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics.

  5. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    For an ideal string, the dispersion relation can be written as =, where T is the tension force in the string, and μ is the string's mass per unit length. As for the case of electromagnetic waves in vacuum, ideal strings are thus a non-dispersive medium, i.e. the phase and group velocities are equal and independent (to first order) of vibration ...

  6. Melde's experiment - Wikipedia

    en.wikipedia.org/wiki/Melde's_experiment

    From this the mass per unit length of the string / wire can be derived. This is called as the principle of the Melde's Experiment Finding the mass per unit length of a piece of string is also possible by using a simpler method – a ruler and some scales – and this will be used to check the results and offer a comparison.

  7. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    Vibration and standing waves in a string, The fundamental and the first six overtones. The fundamental frequency, often referred to simply as the fundamental (abbreviated as f 0 or f 1), is defined as the lowest frequency of a periodic waveform. [1] In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial ...

  8. Node (physics) - Wikipedia

    en.wikipedia.org/wiki/Node_(physics)

    For instance, in a vibrating guitar string, the ends of the string are nodes. By changing the position of the end node through frets, the guitarist changes the effective length of the vibrating string and thereby the note played. The opposite of a node is an anti-node, a point where the amplitude of the standing wave is at maximum. These occur ...

  9. Sympathetic resonance - Wikipedia

    en.wikipedia.org/wiki/Sympathetic_resonance

    Sympathetic resonance or sympathetic vibration is a harmonic phenomenon wherein a passive string or vibratory body responds to external vibrations to which it has a harmonic likeness. [1] The classic example is demonstrated with two similarly-tuned tuning forks .