enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

  3. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    A substochastic matrix is a real square matrix whose row sums are all ; In the same vein, one may define a probability vector as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a probability vector.

  4. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  5. Additive Markov chain - Wikipedia

    en.wikipedia.org/wiki/Additive_Markov_chain

    In probability theory, an additive Markov chain is a Markov chain with an additive conditional probability function. Here the process is a discrete-time Markov chain of order m and the transition probability to a state at the next time is a sum of functions, each depending on the next state and one of the m previous states.

  6. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    and therefore the rows of the matrix sum to zero. Up to a global sign, a large class of examples of such matrices is provided by the Laplacian of a directed, weighted graph . The vertices of the graph correspond to the Markov chain's states.

  7. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  8. Kolmogorov equations - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_equations

    Feller derives the equations under slightly different conditions, starting with the concept of purely discontinuous Markov process and then formulating them for more general state spaces. [5] Feller proves the existence of solutions of probabilistic character to the Kolmogorov forward equations and Kolmogorov backward equations under natural ...

  9. Iterated function - Wikipedia

    en.wikipedia.org/wiki/Iterated_function

    If the function is linear and can be described by a stochastic matrix, that is, a matrix whose rows or columns sum to one, then the iterated system is known as a Markov chain. Examples [ edit ]