Search results
Results from the WOW.Com Content Network
Group 1: Alkali metals Reaction of sodium (Na) and water Reaction of potassium (K) in water. The alkali metals (Li, Na, K, Rb, Cs, and Fr) are the most reactive metals in the periodic table - they all react vigorously or even explosively with cold water, resulting in the displacement of hydrogen.
Metal aqua ions are often involved in the formation of complexes. The reaction may be written as pM x+ (aq) + qL y− → [M p L q] (px-qy)+ In reality this is a substitution reaction in which one or more water molecules from the first hydration shell of the metal ion are replaced by ligands, L. The complex is described as an inner-sphere complex.
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g) Metals in the middle of the reactivity series, such as iron , will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt ...
Electron configuration is also a major factor, illustrated by the fact that the rates of water exchange for [Al(H 2 O) 6] 3+ and [Ir(H 2 O) 6] 3+ differ by a factor of 10 9 also. [4] Water exchange usually follows a dissociative substitution pathway, so the rate constants indicate first order reactions.
In fact, the rate of reaction of alkali metals (as evidenced by their reaction with water for example) is a function not only of position within the group but also of particle size. Hydrogen does not react with oxygen—even though the equilibrium constant is very large—unless a flame initiates the radical reaction, which leads to an explosion.
Explosive reaction of sodium in water, shattering the glass vessel. The reaction can be extremely violent with alkali metals as the hydrogen gas catches fire. [2] Metals like gold and silver, which are below hydrogen in the reactivity series, do not react with water.
Likewise, the corrosion of most metals by oxygen is accelerated at low pH. Providing the electrons for the above reaction is the oxidation of iron that may be described as follows: Fe → Fe 2+ + 2 e −. The following redox reaction also occurs in the presence of water and is crucial to the formation of rust: 4 Fe 2+ + O 2 → 4 Fe 3+ + 2 O 2−
Few reactions are generally formulated for peroxide salt. In excess of dilute acids or water, they release hydrogen peroxide. [1] Na 2 O 2 + 2 HCl → 2 NaCl + H 2 O 2. Upon heating, the reaction with water leads to the release of oxygen. [1] Upon exposure to air, alkali metal peroxides absorb CO 2 to give peroxycarbonates.