Search results
Results from the WOW.Com Content Network
The development of uranium disilicide, uranium nitride, or other high thermal conductivity uranium compound may be critical for the performance of "Accident Tolerant Fuel", a development effort mandated by the US Department of Energy. [2] This is due to zircalloy having a higher thermal conductivity than all replacement materials being developed.
Cladding is the outer layer of the fuel rods, standing between the coolant and the nuclear fuel. It is made of a corrosion-resistant material with low absorption cross section for thermal neutrons, usually Zircaloy or steel in modern constructions, or magnesium with small amount of aluminium and other metals for the now-obsolete Magnox reactors ...
The hydride bands form in rings within the cladding. As the cladding experiences hoop stress from the growing amount of fission products, the hoop stress increases. The material limitations of the cladding is one aspect that limits the amount of burnup nuclear fuel can accumulate in a reactor.
The Chernobyl corium is composed of the reactor uranium dioxide fuel, its zircaloy cladding, molten concrete, as well as other materials in and below the reactor, and decomposed and molten serpentinite packed around the reactor as its thermal insulation. Analysis has shown that the corium was heated to at most 2,255 °C (4,091 °F), and ...
The residual decay heat causes rapid increase in temperature and internal pressure of the fuel cladding which leads to plastic deformation and subsequent bursting. During a loss-of-coolant accident, zirconium-based fuel claddings undergo high temperature oxidation, phase transformation, and creep deformation simultaneously. [3]
The fuel cladding is the first layer of protection around the nuclear fuel and is designed to protect the fuel from corrosion that would spread fuel material throughout the reactor coolant circuit. In most reactors it takes the form of a sealed metallic or ceramic layer.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Zircaloy 1 was developed after zirconium was selected by Admiral H.G. Rickover as the structural material for high flux zone reactor components and cladding for fuel pellet tube bundles in prototype submarine reactors in the late 1940s. The choice was owing to a combination of strength, low neutron cross section and corrosion resistance. [10]