Search results
Results from the WOW.Com Content Network
Thus, the mean time between peaks, including the residence time or mean time before the very first peak, is the inverse of the frequency of exceedance N −1 (y max). If the number of peaks exceeding y max grows as a Poisson process, then the probability that at time t there has not yet been any peak exceeding y max is e −N(y max)t. [6] Its ...
Histogram derived from the adapted cumulative probability distribution Histogram and probability density function, derived from the cumulative probability distribution, for a logistic distribution. The observed data can be arranged in classes or groups with serial number k. Each group has a lower limit (L k) and an upper limit (U k).
Note that for any event with return period , the probability of exceedance within an interval equal to the return period (i.e. =) is independent from the return period and it is equal to %. This means, for example, that there is a 63.2% probability of a flood larger than the 50-year return flood to occur within any period of 50 year.
An estimate of the uncertainty in the first and second case can be obtained with the binomial probability distribution using for example the probability of exceedance Pe (i.e. the chance that the event X is larger than a reference value Xr of X) and the probability of non-exceedance Pn (i.e. the chance that the event X is smaller than or equal ...
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.
Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.