Search results
Results from the WOW.Com Content Network
Thus, the mean time between peaks, including the residence time or mean time before the very first peak, is the inverse of the frequency of exceedance N −1 (y max). If the number of peaks exceeding y max grows as a Poisson process, then the probability that at time t there has not yet been any peak exceeding y max is e −N(y max)t. [6] Its ...
Cumulative frequency is also called frequency of non-exceedance. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing or explaining a situation in which the phenomenon is involved, or in planning interventions, for example in flood ...
Note that for any event with return period , the probability of exceedance within an interval equal to the return period (i.e. =) is independent from the return period and it is equal to %. This means, for example, that there is a 63.2% probability of a flood larger than the 50-year return flood to occur within any period of 50 year.
An estimate of the uncertainty in the first and second case can be obtained with the binomial probability distribution using for example the probability of exceedance Pe (i.e. the chance that the event X is larger than a reference value Xr of X) and the probability of non-exceedance Pn (i.e. the chance that the event X is smaller than or equal ...
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.
As CDFs are defined by integrating a probability density function, the failure probability density is defined such that: Exponential probability functions, often used as the failure probability density f ( t ) {\displaystyle f(t)} .
Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.