Search results
Results from the WOW.Com Content Network
The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...
The downward curve after saturation, along with the lower return curve, form the main loop. The intercepts h c and m rs are the coercivity and saturation remanence. Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it.
English: R. V. Lapshin, Model of hysteresis loop, Triple smooth self-crossing hysteresis loop of the Classical type formed as a result of “squeezing” by the phase shift dAlpha2
Usually only the hysteresis loop is plotted; the energy maxima are only of interest if the effect of thermal fluctuations is calculated. [1] The Stoner–Wohlfarth model is a classic example of magnetic hysteresis. The loop is symmetric (by a 180 ° rotation) about the origin and jumps occur at h = ± h s, where h s is known as the switching field.
The input loop acts as a series voltage summer that adds a part of the output voltage in series to the circuit input voltage. This series positive feedback creates the needed hysteresis that is controlled by the proportion between the resistances of R 1 and the whole resistance (R 1 and R 2). The effective voltage applied to the op-amp input is ...
In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [1] [2] and extended by Yi-Kwei Wen, [3] who demonstrated its versatility by producing a variety of hysteretic patterns. This model is able to capture, in analytical ...
The current is proportional to the magnetization of the sample - the greater the induced current, the greater the magnetization. As a result, typically a hysteresis curve will be recorded [5] and from there the magnetic properties of the sample can be deduced. The idea of vibrating sample came from D. O. Smith's [6] vibrating-coil magnetometer.
Typically the coercivity of a magnetic material is determined by measurement of the magnetic hysteresis loop, also called the magnetization curve, as illustrated in the figure above. The apparatus used to acquire the data is typically a vibrating-sample or alternating-gradient magnetometer. The applied field where the data line crosses zero is ...