Search results
Results from the WOW.Com Content Network
Active heave compensation (AHC) is a technique used on lifting equipment to reduce the influence of waves upon offshore operations. AHC differs from Passive Heave Compensation by having a control system that actively tries to compensate for any movement at a specific point, using power to gain accuracy.
Waves generated by a ship are affected by her geometry and speed, and most of the energy given by the ship for making waves is transferred to water through the bow and stern parts. Simply speaking, these two wave systems, i.e., bow and stern waves, interact with each other, and the resulting waves are responsible for the resistance.
A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.
Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons ) may travel at the speed of light, and that nothing may travel faster.
The basic concept of an RDE is a detonation wave that travels around a circular channel (annulus). Fuel and oxidizer are injected into the channel, normally through small holes or slits. A detonation is initiated in the fuel/oxidizer mixture by some form of igniter. After the engine is started, the detonations are self-sustaining.
These “internal waves,” as he calls them, create vortices which bring colder water from the depths of the ocean higher up — important for the planet’s climate.
Ray tracing of a beam of light passing through a medium with changing refractive index.The ray is advanced by a small amount, and then the direction is re-calculated. Ray tracing works by assuming that the particle or wave can be modeled as a large number of very narrow beams (), and that there exists some distance, possibly very small, over which such a ray is locally straight.
This was done for two different wavelengths. Both waves have the same total energy, but the longer wavelength has its energy spread out over a larger interval. If earth materials’ elastic parameters yield higher velocities with depth, longer wavelength surface waves will travel faster than those with shorter wavelengths.