Search results
Results from the WOW.Com Content Network
(The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]
In other words, for two Lorentz transformations Λ and L from a particular subgroup, the composite Lorentz transformations ΛL and LΛ must be in the same subgroup as Λ and L. This is not always the case: the composition of two antichronous Lorentz transformations is orthochronous, and the composition of two improper Lorentz transformations is ...
that carry both the indices (x, α) operated on by Lorentz transformations and the indices (p, σ) operated on by Poincaré transformations. This may be called the Lorentz–Poincaré connection. [25] To exhibit the connection, subject both sides of equation to a Lorentz transformation resulting in for e.g. u,
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
The transformations of these functions in spacetime are given below. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [8] [9]
In the special relativity, Lorentz transformations exhibit the symmetry of Minkowski spacetime by using a constant c as the speed of light, and a parameter v as the relative velocity between two inertial reference frames. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form:
Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψ j σ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] () where D(Λ) is some finite-dimensional representation, i.e. a matrix.
The derivative operators, and hence the energy and 3-momentum operators, are also non-invariant and change under Lorentz transformations. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [13] [14]