enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Newton's inequalities; Symmetric function; Fluid solutions, an article giving an application of Newton's identities to computing the characteristic polynomial of the Einstein tensor in the case of a perfect fluid, and similar articles on other types of exact solutions in general relativity.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    The equation given by Fuss' theorem, giving the relation among the radius of a bicentric quadrilateral's inscribed circle, the radius of its circumscribed circle, and the distance between the centers of those circles, can be expressed as a quadratic equation for which the distance between the two circles' centers in terms of their radii is one ...

  5. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.

  7. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Newton's formula is of interest because it is the straightforward and natural differences-version of Taylor's polynomial. Taylor's polynomial tells where a function will go, based on its y value, and its derivatives (its rate of change, and the rate of change of its rate of change, etc.) at one particular x value.

  8. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it ...

  9. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The quadratic formula is exactly correct when performed using the idealized arithmetic of real numbers, but when approximate arithmetic is used instead, for example pen-and-paper arithmetic carried out to a fixed number of decimal places or the floating-point binary arithmetic available on computers, the limitations of the number representation ...