enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    The green path in this image is an example of a parabolic trajectory. A parabolic trajectory is depicted in the bottom-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the parabolic trajectory is shown in red. The height of the kinetic energy decreases ...

  3. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:

  4. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a ...

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The velocity equation for a hyperbolic trajectory is = ... In other words, the speed anywhere on a parabolic path is: = ...

  6. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    a parabolic trajectory, a trajectory that goes back and forth along a line segment from the centre of attraction to a point at some distance away, a trajectory going in or out along an infinite ray emanating from the centre of attraction, with its speed going to zero with distance

  7. Radial trajectory - Wikipedia

    en.wikipedia.org/wiki/Radial_trajectory

    Radial parabolic trajectory, a non-periodic orbit where the relative speed of the two objects is always equal to the escape velocity. There are two cases: the bodies move away from each other or towards each other. Radial hyperbolic trajectory: a non-periodic orbit where the relative speed of the two objects always exceeds the escape velocity ...

  8. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue) A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).

  9. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...