Search results
Results from the WOW.Com Content Network
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
This result was published independently in 1912 by an Italian engineer, Alberto Caprilli, in an opuscule entitled "Nuove formole d'integrazione". [5] It was rediscovered in 1955 by Parker, [6] and by a number of mathematicians following him. [7] Nevertheless, they all assume that f or f −1 is differentiable.
Generalizing this argument, any infinite sum of values of a monotone decreasing positive function of (like the harmonic series) has partial sums that are within a bounded distance of the values of the corresponding integrals. Therefore, the sum converges if and only if the integral over the same range of the same function converges.
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
The multiple integral is a definite integral of a function of more than one real variable, for example, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in R 2 are called double integrals, and integrals of a function of three variables over a region of R 3 are called triple integrals. [33]
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period. The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. [1] The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.