Search results
Results from the WOW.Com Content Network
As a more general class of examples, an algorithm on a tree can be decomposed into its behavior on a value and its behavior on children, and can be split up into two mutually recursive functions, one specifying the behavior on a tree, calling the forest function for the forest of children, and one specifying the behavior on a forest, calling ...
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
Therefore, the remaining 3-sets can be partitioned into two groups: n 3-sets containing the items u ij, and n 3-sets containing the items u ij '. In each matching pair of 3-sets, the sum of the two pairing items u ij +u ij ' is 44T+4, so the sum of the four regular items is 84T+4. Therefore, from the four regular items, we construct a 4-set in ...
Disjoint-set data structures [9] and partition refinement [10] are two techniques in computer science for efficiently maintaining partitions of a set subject to, respectively, union operations that merge two sets or refinement operations that split one set into two. A disjoint union may mean one of two things. Most simply, it may mean the union ...
When a set S i that has already been chosen is split by a refinement, only one of the two resulting sets (the smaller of the two) needs to be chosen again; in this way, each state participates in the sets X for O(s log n) refinement steps and the overall algorithm takes time O(ns log n), where n is the number of initial states and s is the size ...
In this image, the universal set U (the entire rectangle) is dichotomized into the two sets A (in pink) and its complement A c (in grey). A dichotomy / d aɪ ˈ k ɒ t ə m i / is a partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be
In computational complexity theory, the set splitting problem is the following decision problem: given a family F of subsets of a finite set S, decide whether there exists a partition of S into two subsets S 1, S 2 such that all elements of F are split by this partition, i.e., none of the elements of F is completely in S 1 or S 2.
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .