enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean free path - Wikipedia

    en.wikipedia.org/wiki/Mean_free_path

    whose solution is known as Beer–Lambert law and has the form = /, where x is the distance traveled by the beam through the target, and I 0 is the beam intensity before it entered the target; ℓ is called the mean free path because it equals the mean distance traveled by a beam particle before being stopped.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    During the first 0.05 s the ball drops one unit of distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on. Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 ( metres per second squared , which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet ...

  4. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    Practical solutions of a ballistics problem often require considerations of air resistance, cross winds, target motion, acceleration due to gravity varying with height, and in such problems as launching a rocket from one point on the Earth to another, the horizon's distance vs curvature R of the Earth (its local speed of rotation () = ()).

  5. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched g is the gravitational acceleration —usually taken to be 9.81 m/s 2 (32 f/s 2 ) near the Earth's surface

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. [39] Importantly, the acceleration is the same for all bodies, independently of their mass. This follows from combining Newton's second law of motion with his law of universal gravitation.

  7. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    where n is the local refractive index as a function of distance along the path C. An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum , length of which, is equal to the optical path length of C .

  8. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory.

  9. Retardation factor - Wikipedia

    en.wikipedia.org/wiki/Retardation_factor

    In chromatography, the retardation factor (R) is the fraction of an analyte in the mobile phase of a chromatographic system. [1] In planar chromatography in particular, the retardation factor R F is defined as the ratio of the distance traveled by the center of a spot to the distance traveled by the solvent front. [2]