Search results
Results from the WOW.Com Content Network
Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w . In mathematics and physics , a vector space (also called a linear space) is a set whose elements, often called vectors , can be added together and multiplied ...
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
A scalar beside a vector (either or both of which may be in parentheses) implies scalar multiplication. The two common operators, a dot and a rotated cross, are also acceptable (although the rotated cross is almost never used), but they risk confusion with dot products and cross products, which operate on two vectors.
Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s −1). For example, "5 metres per second" is a scalar, whereas "5 metres per ...