enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    For example, 3 × 5 is an integer factorization of 15, and (x2)(x + 2) is a polynomial factorization of x 24. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...

  3. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().

  5. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    First we compute 2P. We have s(P) = s(1,1) = 4, so the coordinates of 2P = (x ′, y ′) are x ′ = s 2 – 2x = 14 and y ′ = s(xx ′) – y = 4(1 – 14) – 1 = –53, all numbers understood (mod n). Just to check that this 2P is indeed on the curve: (–53) 2 = 2809 = 14 3 + 5·14 – 5. Then we compute 3(2P). We have s(2P) = s(14 ...

  6. Matrix factorization of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_of_a...

    In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI, where A and B are square matrices and I is the identity matrix. [1]

  7. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.

  8. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.

  9. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    Consider the polynomial Q(x) = 3x 4 + 15x 2 + 10.In order for Eisenstein's criterion to apply for a prime number p it must divide both non-leading coefficients 15 and 10, which means only p = 5 could work, and indeed it does since 5 does not divide the leading coefficient 3, and its square 25 does not divide the constant coefficient 10.