Search results
Results from the WOW.Com Content Network
The psychologist Adolf Zeising noted that the golden ratio appeared in phyllotaxis and argued from these patterns in nature that the golden ratio was a universal law. [92] Zeising wrote in 1854 of a universal orthogenetic law of "striving for beauty and completeness in the realms of both nature and art". [93]
Many works of art are claimed to have been designed using the golden ratio. However, many of these claims are disputed, or refuted by measurement. [1] The golden ratio, an irrational number, is approximately 1.618; it is often denoted by the Greek letter φ .
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
Bianchet is the first watchmaking company to have developed its entire watch movement architecture and watch cases using the golden ratio of 1.618 and the Fibonacci sequence as a design basis. It is also the first company to have developed a tonneau-shaped watch in carbon capable of resisting a pressure of 10ATM or 100 meters of water depth ...
Dynamic symmetry is a proportioning system and natural design methodology described in Hambidge's books. The system uses dynamic rectangles, including root rectangles based on ratios such as √ 2, √ 3, √ 5, the golden ratio (φ = 1.618...), its square root (√ φ = 1.272...), and its square (φ 2 = 2.618....), and the silver ratio (=).
Several properties and common features of the Penrose tilings involve the golden ratio = + (approximately 1.618). [31] [32] This is the ratio of chord lengths to side lengths in a regular pentagon, and satisfies φ = 1 + 1/ φ.
The ratio of the progression of side lengths is , where = (+) / is the golden ratio, and the progression can be written: ::, or approximately 1 : 1.272 : 1.618. Squares on the edges of this triangle have areas in another geometric progression, 1 : φ : φ 2 {\displaystyle 1:\varphi :\varphi ^{2}} .
The golden rhombus. In geometry, a golden rhombus is a rhombus whose diagonals are in the golden ratio: [1] = = + Equivalently, it is the Varignon parallelogram formed from the edge midpoints of a golden rectangle. [1]