Search results
Results from the WOW.Com Content Network
It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.
This is a list of particular manifolds, by Wikipedia page. See also list of geometric topology topics . For categorical listings see Category:Manifolds and its subcategories.
By definition, all manifolds are topological manifolds, so the phrase "topological manifold" is usually used to emphasize that a manifold lacks additional structure, or that only its topological properties are being considered. Formally, a topological manifold is a topological space locally homeomorphic to a Euclidean space.
A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are:
There are three main types of structures important on manifolds. The foundational geometric structures are piecewise linear, mostly studied in geometric topology, and smooth manifold structures on a given topological manifold, which are the concern of differential topology as far as classification goes. Building on a smooth structure, there are:
Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.
This category includes maps between manifolds, smooth or otherwise, particularly in geometric topology. Pages in category "Maps of manifolds" The following 14 pages are in this category, out of 14 total.
In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non- simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups . [ 1 ]