Search results
Results from the WOW.Com Content Network
The ideal gas law is used for these calculations. Often, but not always, the standard temperature and pressure (STP) are taken as 0 °C and 1 bar and used as the conditions for gas stoichiometric calculations. Gas stoichiometry calculations solve for the unknown volume or mass of a gaseous product or reactant.
Constant level of this surface is identified from the equation (,) =, where is called as the stoichiometric mixture fraction which is obtained by setting = = (since if they were react to consume fuel and oxygen, only on the stoichiometric locations both fuel and oxygen will be consumed completely) in the definition of to obtain
In chemistry, a mole map is a graphical representation of an algorithm that compares molar mass, number of particles per mole, and factors from balanced equations or other formulae. [1] They are often used in undergraduate-level chemistry courses as a tool to teach the basics of stoichiometry and unit conversion. [2] [3] [4]
The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction.
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the
In chemical thermodynamics, the reaction quotient (Q r or just Q) [1] is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry at a particular point in time.
The stoichiometric concentration of methane in oxygen is therefore 1/(1+2), which is 33 percent. Any stoichiometric mixture of methane and oxygen will lie on the straight line between pure nitrogen (and zero percent methane) and 33 percent methane (and 67 percent oxygen) – this is shown as the red stoichiometric line.
The stoichiometry of a chemical reaction is based on chemical formulas and equations that provide the quantitative relation between the number of moles of various products and reactants, including yields. [8] Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction ...