Search results
Results from the WOW.Com Content Network
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
Quantal response equilibrium (QRE) is a solution concept in game theory. First introduced by Richard McKelvey and Thomas Palfrey, [1] [2] it provides an equilibrium notion with bounded rationality. QRE is not an equilibrium refinement, and it can give significantly different results from Nash equilibrium. QRE is only defined for games with ...
Introduced by John Maynard Smith and George R. Price in 1972/3, [1] [2] it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.
Nash's most famous contribution to game theory is the concept of the Nash equilibrium, which is a solution concept for non-cooperative games, published in 1951. A Nash equilibrium is a set of strategies, one for each player, such that no player can improve their payoff by unilaterally changing their strategy.
In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games.A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed). [1]
The Berge equilibrium is a game theory solution concept named after the mathematician Claude Berge. It is similar to the standard Nash equilibrium, except that it aims to capture a type of altruism rather than purely non-cooperative play. Whereas a Nash equilibrium is a situation in which each player of a strategic game ensures that they ...
In game theory, a Bayes correlated equilibrium is a solution concept for static games of incomplete information.It is both a generalization of the correlated equilibrium perfect information solution concept to bayesian games, and also a broader solution concept than the usual Bayesian Nash equilibrium thereof.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.