enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Geometric relevance: The torsion τ(s) measures the turnaround of the binormal vector. The larger the torsion is, the faster the binormal vector rotates around the axis given by the tangent vector (see graphical illustrations). In the animated figure the rotation of the binormal vector is clearly visible at the peaks of the torsion function.

  3. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    If the torsion is always zero then the curve will lie in a plane. A curve may have nonzero curvature and zero torsion. For example, the circle of radius R given by r(t) = (R cos t, R sin t, 0) in the z = 0 plane has zero torsion and curvature equal to 1/R. The converse, however, is false.

  5. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  6. Torsion tensor - Wikipedia

    en.wikipedia.org/wiki/Torsion_tensor

    The torsion tensor thus is related to, although distinct from, the torsion of a curve, as it appears in the Frenet–Serret formulas: the torsion of a connection measures a dislocation of a developed curve out of its plane, while the torsion of a curve is also a dislocation out of its osculating plane.

  7. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    is equal to one. This parametrization gives the same value for the curvature, as it amounts to division by r 3 in both the numerator and the denominator in the preceding formula. The same circle can also be defined by the implicit equation F(x, y) = 0 with F(x, y) = x 2 + y 2 – r 2. Then, the formula for the curvature in this case gives

  8. Intrinsic equation - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_equation

    The intrinsic quantities used most often are arc length, tangential angle, curvature or radius of curvature, and, for 3-dimensional curves, torsion. Specifically: Specifically: The natural equation is the curve given by its curvature and torsion.

  9. Saint-Venant's theorem - Wikipedia

    en.wikipedia.org/wiki/Saint-Venant's_theorem

    Saint-Venant [2] conjectured in 1856 that of all domains D of equal area A the circular one has the greatest torsional rigidity, that is . A rigorous proof of this inequality was not given until 1948 by Pólya. [3]