enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    This means that 1 is a root of multiplicity 2, and −4 is a simple root (of multiplicity 1). The multiplicity of a root is the number of occurrences of this root in the complete factorization of the polynomial, by means of the fundamental theorem of algebra.

  3. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The algebraic multiplicity μ A (λ i) of the eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest integer k such that (λ − λ i) k divides evenly that polynomial. [9] [25] [26] Suppose a matrix A has dimension n and d ≤ n distinct eigenvalues.

  5. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi-with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century. [6]

  6. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    The n complex numbers , …, are the roots of the polynomial. If a root appears in several factors, it is a multiple root, and the number of its occurrences is, by definition, the multiplicity of the root.

  7. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    The multiplicity of a root λ of μ A is the largest power m such that ker((A − λI n) m) strictly contains ker((A − λI n) m−1). In other words, increasing the exponent up to m will give ever larger kernels , but further increasing the exponent beyond m will just give the same kernel.

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    This definition of a multiplicities by deformation was sufficient until the end of the 19th century, but has several problems that led to more convenient modern definitions: Deformations are difficult to manipulate; for example, in the case of a root of a univariate polynomial, for proving that the multiplicity obtained by deformation equals ...

  9. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),