Search results
Results from the WOW.Com Content Network
A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as the type of object that declarative sentences denote. For instance, the sentence "The sky is blue" denotes the proposition that the ...
Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic.
In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, [1] or a sentential formula.
In mathematical logic, a propositional variable (also called a sentence letter, [1] sentential variable, or sentential letter) is an input variable (that can either be true or false) of a truth function. Propositional variables are the basic building-blocks of propositional formulas, used in propositional logic and higher-order logics.
propositional logic, Boolean algebra, first-order logic ⊤ {\displaystyle \top } denotes a proposition that is always true. The proposition ⊤ ∨ P {\displaystyle \top \lor P} is always true since at least one of the two is unconditionally true.
Logical positivism was a movement in the early 20th century that tried to reduce the reasoning processes of science to pure logic. Among other things, the logical positivists claimed that any proposition that is not empirically verifiable is neither true nor false, but nonsense. [citation needed]
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
The subject and the predicate are the terms of the proposition. Aristotelian logic does not contain complex propositions made up of simple propositions. It differs in this aspect from propositional logic, in which any two propositions can be linked using a logical connective like "and" to form a new complex proposition. [109]