Search results
Results from the WOW.Com Content Network
Positron emission tomography (PET) [1] is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption.
Brain positron emission tomography is a form of positron emission tomography (PET) that is used to measure brain metabolism and the distribution of exogenous radiolabeled chemical agents throughout the brain. PET measures emissions from radioactively labeled metabolically active chemicals that have been injected into the bloodstream.
PET is a functional imaging technique that produces a three-dimensional image of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron -emitting radionuclide ( tracer ), which is introduced into the body on a biologically active molecule.
For a bone scan, the patient is injected with a small amount of radioactive material, such as 700–1,100 MBq (19–30 mCi) of 99m Tc-medronic acid and then scanned with a gamma camera. Medronic acid is a phosphate derivative which can exchange places with bone phosphate in regions of active bone growth, so anchoring the radioisotope to that ...
Another fraction of [18 F]FDG, representing about 20% of the total fluorine-18 activity of an injection, is excreted renally by two hours after a dose of [18 F]FDG, with a rapid half-life of about 16 minutes (this portion makes the renal-collecting system and bladder prominent in a normal PET scan). This short biological half-life indicates ...
Positron emission tomography–computed tomography (better known as PET-CT or PET/CT) is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed (co-registered) image.
This is a list of positron emission tomography (PET) radiotracers. These are chemical compounds in which one or more atoms have been replaced by a short-lived, positron emitting radioisotope. Cardiology
Once they found a candidate isotope, they attached the positron-emitting fluorine-18, a radioactive isotope with a half-life over five times longer (109.75 minutes), used in PET scans, and that can last for as long as a day when prepared in the morning by cyclotron.