Search results
Results from the WOW.Com Content Network
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.
Often, the mean field is the object of interest, and this is constant too in a statistically stationary flow. Steady flows are often more tractable than otherwise similar unsteady flows. The governing equations of a steady problem have one dimension fewer (time) than the governing equations of the same problem without taking advantage of the ...
The resulting body of polluted water within an aquifer is called a plume, with its migrating edges called plume fronts. Plumes are used to locate, map, and measure water pollution within the aquifer's total body of water, and plume fronts to determine directions and speed of the contamination's spreading in it. [3]
This allows one to calculate the exact solution to the differential equation knowing only the initial conditions. No further iteration is required. Each "plug" can be solved independently provided the previous plug's state is known. The flow model in which the velocity profile consists of the fully developed boundary layer is known as pipe flow.
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...
Once it fully sinks to the floor of the fluid or rises to the surface and settles, Archimedes principle can be applied alone. For a floating object, only the submerged volume displaces water. For a sunken object, the entire volume displaces water, and there will be an additional force of reaction from the solid floor.