Search results
Results from the WOW.Com Content Network
Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.
The following outline is provided as an overview of and topical guide to trigonometry: . Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles.
Euler's formula can also be used to define the basic trigonometric function directly, as follows, using the language of topological groups. [23] The set U {\displaystyle U} of complex numbers of unit modulus is a compact and connected topological group, which has a neighborhood of the identity that is homeomorphic to the real line.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
arcsec – inverse secant function. arcsin – inverse sine function. arctan – inverse tangent function. arctan2 – inverse tangent function with two arguments. (Also written as atan2.) arg – argument of. [2] arg max – argument of the maximum. arg min – argument of the minimum. arsech – inverse hyperbolic secant function.
To avoid any confusion, an inverse trigonometric function is often indicated by the prefix "arc" (for Latin arcus). [9] [10] For instance, the inverse of the sine function is typically called the arcsine function, written as arcsin(x). [9] [10] Similarly, the inverse of a hyperbolic function is indicated by the prefix "ar" (for Latin ārea). [10]
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.