Search results
Results from the WOW.Com Content Network
Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device trades off input forces against movement to obtain a desired amplification in the output force. The model for this is the law of the lever.
The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. [1] [2]
The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product = For example, if a force of 10 newtons (F = 10 N) acts along a point that travels 2 metres (s = 2 m), then W = Fs = (10 N) (2 m) = 20 J. This is approximately the work done lifting a 1 kg ...
The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface.
where F A is a force acting on point A on the rigid lever beam, F B is a force acting on point B on the rigid lever beam and a and b are the respective distances from points A and B to the pivot point. If F B is the output force and F A is the input force, then mechanical advantage MA is given by the ratio of output force to input force.
If a and b are distances from the fulcrum to points A and B and the force F A applied to A is the input and the force F B applied at B is the output, the ratio of the velocities of points A and B is given by a/b, so we have the ratio of the output force to the input force, or mechanical advantage, is given by: = =.
This is analogous to electrical impedance, that is the ratio of voltage output to current input (e.g. resistance is voltage divided by current). A "spring constant" defines the force output for a displacement (extension or compression) of the spring. A "damping constant" defines the force output for a velocity input. If we control the impedance ...
Horsepower (hp) is a unit of measurement of power, or the rate at which work is done, usually in reference to the output of engines or motors. There are many different standards and types of horsepower.