Search results
Results from the WOW.Com Content Network
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality).The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality.
By contrast, for massive particles, distinct chirality states (e.g., as occur in the weak interaction charges) have both positive and negative helicity components, in ratios proportional to the mass of the particle. A treatment of the helicity of gravitational waves can be found in Weinberg. [5]
In particular for a massless particle the helicity is the same as the chirality while for an antiparticle they have opposite sign. The handedness in both chirality and helicity relate to the rotation of a particle while it proceeds in linear motion with reference to the human hands. The thumb of the hand points towards the direction of linear ...
An object that is not chiral is said to be achiral. A chiral object and its mirror image are said to be enantiomorphs. The word chirality is derived from the Greek χείρ (cheir), the hand, the most familiar chiral object; the word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'.
In this case a new Majorana mass term is added to the Yukawa sector: = (¯ + ¯) where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right) chirality (note that a left-chirality projection of an antiparticle is a right-handed field; care must be taken here due to different notations ...
The chirality of a molecule that has a helical, propeller, or screw-shaped geometry is called helicity [5] or helical chirality. [6] [7] The screw axis or the D n, or C n principle symmetry axis is considered to be the axis of chirality. Some sources consider helical chirality to be a type of axial chirality, [7] and some do not.
(See Chirality (physics) § Chirality and helicity for the difference.) Chirality is a fundamental property of particles and is relativistically invariant: It is the same regardless of the particle's speed and mass in every inertial reference frame. [12]
In mathematics, this property is also known as chirality. For instance, a metal rod is not chiral, since its appearance in a mirror is not distinct from itself. However a screw or light bulb base (or any sort of helix ) is chiral; an ordinary right-handed screw thread, viewed in a mirror, would appear as a left-handed screw (very uncommon ...