enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminarturbulent_transition

    When many random vortices erupt as turbulence onsets, the generalized freezing of laminar slip (laminar interlocking) is associated with noise and a dramatic increase in resistance to flow. This might also explain the parabolic isovelocity profile of laminar flow abruptly changing to the flattened profile of turbulent flow – as laminar slip ...

  3. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    With respect to laminar and turbulent flow regimes: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies, vortices and other flow instabilities ...

  4. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. The threshold velocity is determined by a dimensionless parameter characterizing the flow called the Reynolds number , which also depends on the viscosity and density of the fluid and dimensions of the channel.

  5. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    Usually, there is a transition from laminar to turbulent as the plume moves away from its source. This phenomenon can be clearly seen in the rising column of smoke from a cigarette. When high accuracy is required, computational fluid dynamics (CFD) can be employed to simulate plumes, but the results can be sensitive to the turbulence model chosen.

  6. Transition point - Wikipedia

    en.wikipedia.org/wiki/Transition_point

    In the field of fluid dynamics the point at which the boundary layer changes from laminar to turbulent is called the transition point.Where and how this transition occurs depends on the Reynolds number, the pressure gradient, pressure fluctuations due to sound, surface vibration, the initial turbulence level of the flow, boundary layer suction, surface heat flows, and surface roughness.

  7. Dean number - Wikipedia

    en.wikipedia.org/wiki/Dean_number

    The Dean number (De) is a dimensionless group in fluid mechanics, which occurs in the study of flow in curved pipes and channels.It is named after the British scientist W. R. Dean, who was the first to provide a theoretical solution of the fluid motion through curved pipes for laminar flow by using a perturbation procedure from a Poiseuille flow in a straight pipe to a flow in a pipe with very ...

  8. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.

  9. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    A turbulent event is a series of turbulent fluctuations that contain more energy than the average flow turbulence. [ 11 ] [ 12 ] The turbulent events are associated with coherent flow structures such as eddies and turbulent bursting, and they play a critical role in terms of sediment scour, accretion and transport in rivers as well as ...