Search results
Results from the WOW.Com Content Network
Axial loading is defined as applying a force on a structure directly along a given axis of said structure. [1] In the medical field, the term refers to the application of weight or force along the course of the long axis of the body. [2] The application of an axial load on the human spine can result in vertebral compression fractures. [3]
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
The axle load of a wheeled vehicle is the total weight bearing on the roadway for all wheels connected to a given axle.Axle load is an important design consideration in the engineering of roadways and railways, as both are designed to tolerate a maximum weight-per-axle (axle load); exceeding the maximum rated axle load will cause damage to the roadway or railway tracks.
A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.
Transverse loading also induces shear forces that cause shear deformation of the material and increase the transverse deflection of the member. Axial loading – The applied forces are collinear with the longitudinal axis of the member. The forces cause the member to either stretch or shorten. [2]
One first-order effect is the initial deflection of the structure in reaction to the lateral load. The magnitude of the P-delta effect depends on the magnitude of this initial deflection. P-delta is a moment found by multiplying the force due to the weight of the structure and applied axial load, P, by the first-order deflection, Δ or δ.
The curve () describes the deflection of the beam in the direction at some position (recall that the beam is modeled as a one-dimensional object). is a distributed load, in other words a force per unit length (analogous to pressure being a force per area); it may be a function of , , or other variables.
An axial or thrust ball bearing uses side-by-side races. An axial load is transmitted directly through the bearing, while a radial load is poorly supported and tends to separate the races, so that a larger radial load is likely to damage the bearing. Deep-groove