Search results
Results from the WOW.Com Content Network
Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics.
"Tyre modelling for use in vehicle dynamics studies" (PDF). Society of Automotive Engineers. A new way of representing tyre data obtained from measurements in pure cornering and pure braking conditions. Hans Pacejka (2012) Tire and Vehicle Dynamics, third edition (first edition 2002) Lugner, P., & Plöchl, M. (2005).
Category: Vehicle dynamics. ... Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance.
In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).
In transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Directional stability is stability of a moving body or vehicle about an axis which is perpendicular to its direction of motion. Stability of a vehicle concerns itself with the tendency of a vehicle to return to its original direction in relation to the oncoming medium (water, air, road surface, etc.) when disturbed (rotated) away from that original direction.
In vehicle dynamics, slip angle [1] or sideslip angle [2] is the angle between the direction in which a wheel is pointing and the direction in which it is actually traveling (i.e., the angle between the forward velocity vector and the vector sum of wheel forward velocity and lateral velocity , as defined in the image to the right).
The procedure involves instrumentation of the test vehicle to collect information while driving on the test road. There are two major types of data to be collected, Driver Behavior data and Vehicle versus Road data. The Vehicle versus Road data are used to prepare the road drive cycle and the Driver Behavior data to prepare the Driver model.