Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 ...
Aniline (from Portuguese anil 'indigo shrub', and -ine indicating a derived substance) [6] is an organic compound with the formula C 6 H 5 NH 2. Consisting of a phenyl group ( −C 6 H 5 ) attached to an amino group ( −NH 2 ), aniline is the simplest aromatic amine .
Aniline absorbs in the K (220 - 250 nm) and the B (250 - 290 nm) bands exhibited by benzenoid compounds. The K and B bands arise from π to π* transitions as a result of the a group containing multiple bond being attached to the benzene ring. When dissolved in ethanol, λ max for aniline is 230 nm, but in dilute aqueous acid λ max is 203 nm ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
The value gives an approximation for the content of aromatic compounds in the oil, [2] since the miscibility of aniline, which is also an aromatic compound suggests the presence of similar (i.e. aromatic) compounds in the oil. The lower the aniline point, the greater is the content of aromatic compounds in the oil.
DMA was first reported in 1850 by the German chemist A. W. Hofmann, who prepared it by heating aniline and iodomethane: [3] [4] C 6 H 5 NH 2 + 2 CH 3 I → C 6 H 5 N(CH 3) 2 + 2 HI. DMA is produced industrially by alkylation of aniline with methanol in the presence of an acid catalyst: [5] C 6 H 5 NH 2 + 2 CH 3 OH → C 6 H 5 N(CH 3) 2 + 2 H 2 O
Substance Formula 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C 90 °C 100 °C Barium acetate: Ba(C 2 H 3 O 2) 2: 58.8: 62: 72: 75: 78.5: 77: 75
Below is a laboratory synthesis of 4-nitroaniline from aniline. The key step in this reaction sequence is an electrophilic aromatic substitution to install the nitro group para to the amino group. The amino group can be easily protonated and become a meta director. Therefore, a protection of the acetyl group is required.