enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The uniaxial tension test is the primary experimental method used to directly measure a material's stress–strain behavior, providing valuable insights into its strain-hardening behavior. [1] The strain hardening exponent is sometimes regarded as a constant and occurs in forging and forming calculations as well as the formula known as Holloman ...

  3. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

  4. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. [3] Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials.

  5. Forming limit diagram - Wikipedia

    en.wikipedia.org/wiki/Forming_limit_diagram

    Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...

  6. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Here, n is the strain-hardening exponent and K is the strength coefficient. n is a measure of a material's work hardening behavior. Materials with a higher n have a greater resistance to necking. Typically, metals at room temperature have n ranging from 0.02 to 0.5. [3]

  7. Environmental stress cracking - Wikipedia

    en.wikipedia.org/wiki/Environmental_stress_cracking

    In the strain hardening method, the slope of strain hardening region (above the natural draw ratio) in the true stress-strain curves is calculated and used as a measure of ESCR. This slope is called the strain hardening modulus (G p). The strain hardening modulus is calculated over the entire strain hardening region in the true stress strain curve.

  8. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    Beyond the Lüders strain, the stress increases due to strain hardening until it reaches the ultimate tensile stress. During this stage, the cross-sectional area decreases uniformly along the gauge length, due to the incompressibility of plastic flow (not because of the Poisson effect , which is an elastic phenomenon).

  9. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.