Search results
Results from the WOW.Com Content Network
The equilibrium expression above is a function of the concentrations [A], [B] etc. of the chemical species in equilibrium. The equilibrium constant value can be determined if any one of these concentrations can be measured.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The reaction quotient plays a crucial role in understanding the direction and extent of a chemical reaction's progress towards equilibrium: Equilibrium condition: At equilibrium, the reaction quotient (Q) is equal to the equilibrium constant (K) for the reaction. This condition is represented as Q = K, indicating that the forward and reverse ...
The law is a statement about equilibrium and gives an expression for the equilibrium constant, a quantity characterizing chemical equilibrium. In modern chemistry this is derived using equilibrium thermodynamics. It can also be derived with the concept of chemical potential. [3]
In his 1803 publication about the quantity of gases absorbed by water, [1] William Henry described the results of his experiments: … water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
However, fugacity has the dimension of pressure, so it must be divided by a standard pressure, usually 1 bar, in order to produce a dimensionless quantity, f / p o . An equilibrium constant is expressed in terms of the dimensionless quantity. For example, for the equilibrium 2NO 2 ⇌ N 2 O 4,
The numbers in front of each quantity are a set of stoichiometric coefficients which directly reflect the molar ratios between the products and reactants. Stoichiometry measures these quantitative relationships, and is used to determine the amount of products and reactants that are produced or needed in a given reaction.