Search results
Results from the WOW.Com Content Network
In this example the organic layer is the product, which is a liquid at room temperature. The bottom aqueous layer is removed with a pipette and discarded. The top layer is transferred to an Erlenmeyer flask where it is treated with anhydrous sodium sulfate to remove any remaining water.
The mechanism of the reaction involves two steps. The first step is a nucleophilic addition to the nitrile with the aid of a polarizing Lewis acid, forming an imine, which is later hydrolyzed during the aqueous workup to yield the final aryl ketone. Hoesch reaction mechanism
The resulting hydroquinone is poorly soluble in typical reaction solvents (dioxane, benzene, alkanes), which facilitates workup. Solutions of DDQ in benzene are red, due to the formation of a charge-transfer complex. [9]
Workup procedures may vary depending on the stability of the products. If the organic products of the reaction are stable to aqueous acid, aqueous hydrochloric acid may be used to quench the reaction. For workups involving acid-labile products, mildly basic solutions or pH 7–8 buffers may be used.
The complex is destroyed upon aqueous workup to give the desired ketone. For example, the classical synthesis of deoxybenzoin calls for 1.1 equivalents of AlCl 3 with respect to the limiting reagent, phenylacetyl chloride. [14]
The mechanism of the Stille reaction has been extensively studied. [11] [23] The catalytic cycle involves an oxidative addition of a halide or pseudohalide (2) to a palladium catalyst (1), transmetalation of 3 with an organotin reagent (4), and reductive elimination of 5 to yield the coupled product (7) and the regenerated palladium catalyst (1).
Diels–Alder reaction, simplest example. In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent.